Antimicrobial Resistance in Companion Animals
What’s Hot and What’s the Risk?

Megan Jacob, MS, PhD
Assistant Professor, Clinical Microbiology
Director, Clinical Microbiology Laboratory
College of Veterinary Medicine
North Carolina State University
U.S. Pet Ownership

- **Dogs**: 70,000,000
d- **Cats**: 74,100,000

<table>
<thead>
<tr>
<th></th>
<th>Dogs</th>
<th>Cats</th>
<th>Birds</th>
<th>Horses</th>
</tr>
</thead>
<tbody>
<tr>
<td>Percent of households</td>
<td>37.2%</td>
<td>32.4%</td>
<td>3.9%</td>
<td>1.8%</td>
</tr>
<tr>
<td>Average number per household</td>
<td>1.7</td>
<td>2.2</td>
<td>2.5</td>
<td>3.5</td>
</tr>
</tbody>
</table>

63.2% of pet owners consider their pets to be family members

[American Veterinary Medical Association, 2007](#)
[NC State University](#)
The Changing Relationship Between Owners and Pets

% of Respondents

- Keeps dog(s) in house
- Allows dog(s) to lick hands
- Allows dog(s) to lick face
- Washes dog in same tub
- Allows dog(s) on sofa
- Allows dog(s) in bed

N = 108; Dog show participants

Walther et al., 2012
U.S. Pets and TheirVeterinarians

• **Dog** owners average **2.6** visits to their veterinarian each year
 – Average $356
• **Cat** owners average **1.7** visits to their veterinarian each year
 – Average $190
• Most common infections
 – Skin (and ear) infections
 – Urinary tract infections
 – Wound infections
 – Respiratory tract infections
• Antibacterial drugs are also used prophylactically to prevent infections prior to surgery
Use of antibiotics in companion animals

- There is no central registry or survey data to described which medications are used most often
- **Baker et al., 2012**
 - 435 dogs enrolled after admission to a teaching hospital
 - 55.6% had received at least one antimicrobial in the previous 12 month
 - β-lactams (72.7%)
 - Cephalexin
 - Aminoglycoside (32.2%)
 - Neomycin
 - Gentamicin
 - Quinolone (23.1%)
 - Enrofloxacin
 - Dose, route, duration were not well documented in medical records
Monitoring Resistance in Companion Animals

- National monitoring programs for development of antimicrobial resistance in animals generally do not include companion animals

- Where is the data being generated?
 - State veterinary diagnostic laboratories
 - Commercial laboratories
 - Teaching hospital laboratories*
Antibiotic Resistant Organisms

• The most common organisms developing resistance in companion animals (dogs, cats, horses)
 – *E. coli*
 – *P. aeruginosa*
 – *Enterococci*
 – *Staphylococcus* species (incl. MRSA)

• Hot topics at NCSU VHC
 – Methicillin-resistant *S. pseudintermedius*
 – ESBL-producing *Klebsiella* and *E. coli*
Methicillin-Resistant *Staphylococci*

- Methicillin (oxacillin) resistance confers resistance to
 - Pencillins
 - β-lactam/β-lactamase inhibitor combinations
 - Antistaphylococcal cephems
 - Carbapenems
- Mediated by the *mecA* gene and PBP2a protein
- Occurs in multiple staphylococcal species
 - *S. aureus* (MRSA)
 - *S. pseudintermedius* (MRSP)
Methicillin-Resistant *Staphylococci*

- *S. pseudintermedius* is the predominant *Staphylococci* of dogs
 - 20-90% of healthy canine skin/mucous membranes
 - Most common cause of skin infections
 - Cats can be colonized; less frequent

Micky; 4 year old FS pug

Previously responded to Cephalexin; Clavamox
Now failing to respond to Cefpodoxime
Methicillin-Resistant *S. pseudintermedius*

- Pinchbeck et al. (2006)
 - Results suggest most *S. pseudintermedius* strains associated with pyoderma are endogenous

- MRSP carriage can last more than one year after clinical infection is “cleared”

- Concurrent resistance to other antimicrobial classes is common
 - Bryan et al. (2012) suggest the majority of pyoderma cases resolve regardless of methicillin susceptibility
MRSP Resistance to Other Antimicrobial Classes

N=67 MRSP isolated from canines at NCSU-CVM June-November
Zoonotic Transmission

• Zoonotic transmission of *S. pseudintermedius* has been documented
 – Owning a dog is a significant risk factor
 • Especially if it has dermatitis

• Microorganisms residing on the skin or mucosal surfaces are the most likely to be transmitted
 – Sharing environments (bed; sofas; bath tubs)

• The reverse is also true!
 – *S. aureus*
Zoonotic Transmission?

- Keeps dog(s) in house: 90%
- Allows dog(s) to lick hands: 100%
- Allows dog(s) to lick face: 70%
- Washes dog in same tub: 40%
- Allows dog(s) on sofa: 60%
- Allows dog(s) in bed: 30%

N = 108; Dog show participants

Walther et al., 2012
What are we Sharing?

S. aureus in **18.5%** of owners; **1.8%** of dogs
None simultaneously
Dog isolates were genetically similar to human lineage

S. pseudintermedius in **5.6%** of owners; **13.9%** of dogs
One owner did have a MRSP
Owners with > 2 dogs, higher risk of colonization
None of the other risk factors were statistically significant

NC State University
Extended Spectrum Beta-Lactamases (ESBL)

- **ESBL**’s are enzymes mediating resistance to all penicillins and cephalosporins
- *Enterobacteriaceae* can produced ESBL’s
 - *E. coli, Klebsiella, Proteus*
 - Originally observed in HA infections from human hospitals
 - Emergence of these resistant organisms in community strains threatens effective therapy for all Gram negative infections
 - Plasmid associated
 - Associated with resistance to aminoglycosides and TMS
- Little description of these isolates in companion animals
 - Increasingly recognized in food animals
At NCSU VHC

• Presumptive ESBL organisms are identified based on initial susceptibility to cefpodoxime
 – Confirmatory E-test is used prior to notifying clinicians
 – The specific resistance mechanisms are not being evaluated at this time

<table>
<thead>
<tr>
<th></th>
<th>Dogs</th>
<th>Cats</th>
<th>Horses</th>
</tr>
</thead>
<tbody>
<tr>
<td>E. coli</td>
<td>9</td>
<td>3</td>
<td>2</td>
</tr>
<tr>
<td>Klebsiella</td>
<td>10</td>
<td>0</td>
<td>1</td>
</tr>
</tbody>
</table>

Isolates from nasal swabs, corneas, wounds, urine
Enterococcus

• Normal inhabitants of the GI tract
 – Not typically associated with severe disease in companion animals
 • Commonly found in UTIs
 • Nosocomial complications
 – Often found in the presence of another pathogen
• Resistance is widespread and of public health importance
 – Resistance develops rapidly
 – Resistance genes are readily shared with other organisms
• Use clinical judgment to decide if this organism is significant prior to treatment
Psuedomonas aeruginosa

• Predominantly associated with skin and ear infections
 – Evidence for increasing resistance to fluoroquinolones in otitis externa cases
 – Rubin et al. (2008)
 • ~30% resistant to fluoroquinolones
 • 10-90% resistance to aminoglycosides
 • Resistance to tetracycline, sulphonamides, and chloramphenicol remain high (>75%)
Conclusions

• Companion animals are reservoirs for antimicrobial resistant organisms
• We may be under-recognizing their potential contribution to populations of antimicrobial resistant organisms
 – Their association with human health is still unclear
• Work is needed to better describe the relationship between resistant microorganisms in humans and their pets
 – Potential collaboration and a one health approach
Questions?